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In a high volume production genetics laboratory, optimizing throughput and removing bottlenecks are serious concerns. The goal of this project was to automate optimization of run length on ABI gene sequencers on a 
per plate level. Several methods for estimating the optimal run length of individual past sequences are presented as well as an algorithm for calculating the optimal run length for the population of plates. The algorithm 

accurately determines a shortened run time for low performing projects but also indicates that many projects should be run longer than they currently are.
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Results:Results:Introduction:Introduction:Introduction:
The Joint Genome Institute (JGI) sequences more than 3 billion bases per year. One of the major bottlenecks in the sequence 
production process is the gene sequencing itself. Capillary electrophoresis is used so running the sequencer longer increases the 
number of bases read. However, later bases have lower quality scores and so may not be worth collecting.

Two distinct cases emerged after running our 
algorithm on a number of libraries.

1. Low performing: The majority of the samples 
cease producing useful data before the end of the 
run time (e.g. Fig. 4a). In this case the algorithm 
fits sample data with low deviation and predicts 
an optimal stop time for the population which 
matches observed results.

2. High Performing: A large number of samples 
continue to produce data up to the end of the run 
and are only stopped when the sequencer is 
stopped (e.g. Fig 4b). The stop times form a large 
cluster at the end of the run time. Our algorithm 
fits a distribution from the variance of the samples 
which stop before the end of the run time. From 
this approximation a lengthened runtime is 
estimated.

Discussion:Discussion:
Our original goal was to improve production by shortening sequencing run time where resources were being wasted collecting 
unusable data.

Ironically we find that we should run a large number of high performing libraries longer than we presently do. In order to find 
truly optimal run times, we need a cost model that can directly compare the cost of lost material and opportunity associated with 
longer run times to the cost of bases missed with shorter run times.

For low performing samples our algorithm does a very good job finding the optimal run time for the population.
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Figure 1: ABI 3730 Capillary 
Electrophoresis Gene Sequencer

Original Run Length 14000 scans 78 minutes
Initial Estimated Optimal Run Length 14600 scans 81 minutes
Experimental Run Length 18000 scans 100 minutes
Estimated optimal run length after experiment 16600 scans 92 minutes

In the second case finding the “optimal” run 
time is difficult because the algorithm has to 
extrapolate what the distribution would have 
looked like had the sequencer been run longer. 
To determine the validity of our algorithm in 
this case, we conducted an experiment where 
several plates were run longer than normal. 

The estimated lengthened run time is not as 
long as the true optimal run time, however, it 
is sufficient to walk the run time out to 
optimality over several iterations. Since the 
cost of running the sequencers too long is far 
greater than the cost of discarding a small 
amount of data, this is a useful behavior. 

Methods:Methods:
Prior to looking for an algorithm to find the optimal stop time, we examined several metrics of the “end of useful data” including:

•Last call time of the KB base-calling algorithm
•Number of  “Q20” bases
•Jazz trim length
•Trends in Q score of base-calls
•PHRAP alignment length

These metrics indicate the time when a sample which has already 
been sequenced, stopped producing useful data.

Once we have a collection of stop times for past samples, this data 
is clustered using the k-means, farthest neighbors and nearest 
neighbors algorithms. A convolution of Gaussian distributions is 
constructed based on the means and variances of the clusters. The 
convolution which fits the data best is then used as a continuous 
probability density function.

From the probability density function we can trivially calculate the 
necessary runtime to collect N-percent of the data by Riemann 
sum integration.

Table 1: Summary of our extended run time experiment.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0  5000  10000  15000  20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

Extended Run Time Experiment: Estimated Probability Density Functions

K-Means
Farthest Neighbors
Nearest Neighbors

Figure 5b: The estimated probability density 
function for the experimental data. Note the 

difference between this and figure 4b.

Figure 4a: A low performing library whose run 
time should be shortened.
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Figure 4b: A very high performing library which 
would produce more data given a longer run 

time.
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Figure 2a: Top the processed trace data for all 
four bases from the ABI sequencer in a typical 
run. Bottom the quality score of the base calls 

over the run. Quality is highest in the middle and 
falls off later in the run.
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Figure 2b: An expanded view of the trace data 
during high and low quality parts of a run. Later 

in the run the signal gets noisier and bases 
aren’t called with as great a confidence.

In order to increase production at the JGI we want to 
find the optimal run time to collect all useful data 
without wasting time reading bases that aren’t usable. 

Previously we had no automated way to determine 
the appropriate run length. In this project we 
developed an algorithm for estimating optimal run 
length suitable for automation.

Figure 5a: Stop time data from the extended 
run time experiment.
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Figure 3: This plot shows the convolved Gaussian distributions resulting from 
all three clustering algorithms run with “end of useful data” times produced by a 
variant of the Jazz trimming algorithm.

The three clustering algorithms produce somewhat different results even when 
run on the same data. Hence we use all three and choose the one which best 
fits the data we have. Usually Farthest Neighbors provides the best fit but not 
always.
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